concentration)

- x Small changes f pH from normal can produce marked changes in enzyme activity & chemical reactions within the body
- x Acidosis -CNS depression, comid (everely acidotic, i.e., pH <7.0)
- x Alkalosis -CNS excitability, tetany, seizures

Acid Base 1 of 9

x The value of K_a is 6.1, and the normal HQOand PCQ are 24 mmol/Land40 mmHg respectively Substitute tese,

pH 6.1
$$\log \frac{\$24}{\$0 \ u0.03}$$
.
=6.1 + $\log 20$
=6.1 + 1.3
=7.4

Regulation of pH

- x Buffer systems very rapid \$econd's incomplete
- x Respiratory responses -

- x Commonly, the AG remains normal in an acidosis that is due to simple Itas (as in diarrhea and certain renal diseases) because, as a general principle fases to meet the drop in HCQ anions, thereby maintaining anionic balance.
- x When an acid load is present, HC@trates acid and anion gap increasæeating a condition known as 'anion gap metabolic acidosis'.

Major Acid Base Disorders and Compensatory Mechanism

Primary Disorder	Primary Disturbance	Primary Compensation
Respiratory Acidosis	9 PCO ₂	9 HCO₃⁻
Respiratory Akalosis	; PCO ₂	; + & 2
Metabolic Acidosis	; HCO ₃	; PCO ₂ (hyperventilation)
Metabolic Alkalosis	9 HCO ₃	9 PCO ₂ (hypoventilation)

- x The primary compensation (acute compensation) is generally achieved most rapidly through respiratory control of CO
- x Ultimately the renal system excretes acid or bicarbonate (chronic compensation) to reach the final response to the disturbance
- x Mixed disorders are common

Blood Gas Evaluation

What do we get from a blood gas machine?

- x pH measured
- x PCO measured
- x PO₂ measured
- x HCO₃ calculate (via Henderson Hesselbalch equation)
- x Base excess (deficit)calculated
- x Hemoglobin oxygen saturationcalculated
- Gases (carbon dioxide & oxygen) are reported as partial pressoners only in unit of mmHg (US), or KPa (International); 1 KPa = 7.5 mmHg (torr)

Blood Gas Sampling

- x Arterial vs. venous
- x Venous samples are

Sites for Arterial Samples

- x Dog: dorso pedafemoral, anterior tibialingual
- x Cat: femoral, dorso pedal
- x Horse: facial, mandibular, lateral metatarsal, posterior auricular, carotid
- x Cow: coccygeal, posterior auxilar
- x Pig: coccygeal, posterior auricular

Normal Values

	Arterial	Venous
pН	7.35-7.45	7.35
PCO ₂	35-45 mmHg	45 mmHg
PO ₂	90-100mmHg	40 mmHg
HCO ₃		

Acid Base 9 of 9